This week we’re exploring edible plants! The Edible Plant Database (EPD) is an outcome of the GROW Observatory, a European Citizen Science project on growing food, soil moisture sensing and land monitoring. It contains information on 146 edible plant species, including their ideal growing conditions and time to harvest and germination.
TidyTuesday
Data Visualization
Python Programming
2026
Author
Peter Gray
Published
February 2, 2026
Chart A
Chart B
Timeline of Mens and Womens Medal Events
1. Python code
Show code
import pandas as pdimport numpy as npimport plotly.express as pxfrom datetime import datetimeschedule = pd.read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2026/2026-02-10/schedule.csv')medal_events = schedule[schedule["is_medal_event"] !=False]medal_events = medal_events[["event_description", "venue_name", "start_datetime_local", "end_datetime_local"]]def categorize_gender(description):if pd.isna(description):return"Other" description_lower = description.lower()if"men"in description_lower and"women"notin description_lower:return"Male"elif"women"in description_lower:return"Female"elifany(word in description_lower for word in ["team", "mixed", "relay", "2-man", "2-woman", "4-man", "pair"]):return"Team/Mixed"else:return"Other"medal_events['event_gender'] = medal_events['event_description'].apply(categorize_gender)medal_events['start_datetime_local'] = pd.to_datetime(medal_events['start_datetime_local'])medal_events['end_datetime_local'] = pd.to_datetime(medal_events['end_datetime_local'])medal_events_men = medal_events[medal_events["event_gender"] =="Male"]fig_men = px.timeline( medal_events_men, x_start="start_datetime_local", x_end="end_datetime_local", y="event_description", color="venue_name", title="Olympic Medal Events Timeline: Male", labels={"event_description": "Event","venue_name": "Venue" })fig_men.update_xaxes( dtick="D1", # Every day tickformat="%d.%m.%Y", # Day.Month.Year format tickangle=45, title="Date")# fig_men.show()### Frauen-Eventsmedal_events_women = medal_events[medal_events["event_gender"] =="Female"] fig_women = px.timeline( medal_events_women, x_start="start_datetime_local", x_end="end_datetime_local", y="event_description", color="venue_name", title="Olympic Medal Events Timeline: Female", labels={"event_description": "Event","venue_name": "Venue" })# fig_women.show()