import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
income_inequality_processed = pd.read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-08-05/income_inequality_processed.csv')
income_inequality_raw = pd.read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-08-05/income_inequality_raw.csv')
countries = ["United States", "Germany", "France", "Italy", "Spain", "UK"]
df = income_inequality_processed[income_inequality_processed["Entity"].isin(countries)]
# Only that after 20008
df = df[df["Year"] >= 2008]
heatmap_data_b4_tax = df.pivot(index="Entity", columns="Year", values="gini_mi_eq")
heatmap_data_aft_tax = df.pivot(index="Entity", columns="Year", values="gini_dhi_eq")
fig, axes = plt.subplots(1, 2, figsize=(18, 8), sharey=True)
sns.heatmap(heatmap_data_b4_tax,
cmap="YlOrRd",
ax=axes[0])
axes[0].set_title("Before-Tax Income Inequality")
axes[0].set_xlabel("Year")
axes[0].set_ylabel("Country")
sns.heatmap(heatmap_data_aft_tax,
cmap="YlOrRd",
ax=axes[1])
axes[1].set_title("After-Tax Income Inequality")
axes[1].set_xlabel("Year")
axes[1].set_ylabel("")
plt.show()